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Abstract
The band structure and bandgaps of one-dimensional Fibonacci quasicrystals composed of
epsilon-negative materials and mu-negative materials are studied. We show that an
omnidirectional bandgap (OBG) exists in the Fibonacci structure. In contrast to the Bragg gaps,
such an OBG is insensitive to the incident angle and the polarization of light, and the width and
location of the OBG cease to change with increasing Fibonacci order, but vary with the
thickness ratio of both components, and the OBG closes when the thickness ratio is equal to the
golden ratio. Moreover, the general formulations of the higher and lower band edges of the
OBG are obtained by the effective medium theory. These results could lead to further
applications of Fibonacci structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the first experimental verification of a negative index
of refraction [1], artificially constructed metamaterials have
become of considerable interest, because these materials can
exhibit electromagnetic characteristics unlike those of any
conventional materials. There are mainly two kinds of
metamaterials: double-negative (DNG) metamaterials whose
permittivity (ε) and permeability (μ) are simultaneously
negative [2, 3] and single-negative (SNG) metamaterials [4–6],
which include the mu-negative (MNG) materials with negative
μ but positive ε and the epsilon-negative (ENG) materials
with negative ε but positive μ. Theoretical and experimental
studies on the propagation of light through period structures
containing SNG materials have evidenced the existence of
a zero effective phase gap which is omnidirectional and
insensitive to disorder [7–9].

Quasicrystals are some kind of non-periodic structures
which lack long-range translational symmetry, but possess

4 Author to whom any correspondence should be addressed.

a certain orientation order. The structural ordering
of quasicrystals is between the periodic and disordered
systems [10]. Among quasicrystals the most studied
are structures based on the Fibonacci sequence. Both
classical and quantum waves in these structures have
been shown to have a self-similar energy spectrum [11],
a pseudo-bandgap corresponding to regions of forbidden
frequencies [12], and critically localized states whose
wavefunctions are characterized by power law asymptotes
and self-similarity [13]. All these properties are typical for
quasi-periodic structures so that Fibonacci superlattices are
considered as archetypal structures to study the fundamental
aspects of wave propagation in quasicrystals. Recently, the
bandgaps of Fibonacci photonic crystals with DNG materials
have been presented [14–16], and it has been found that the
change in the width and location of the omnidirectional zero-n̄
gap is limited when Fibonacci order is changed [16].

In this paper, we introduce the SNG materials into
Fibonacci structure to study the bandgaps and band edges of
Fibonacci structure. We show that a new type of OBG exists
in the Fibonacci structures. In contrast to the Bragg gaps,
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such an OBG is insensitive to the incident angle and both
polarizations of light, and the width and location of the OBG
do not change with Fibonacci order, but vary with the thickness
ratio of the two media, and the OBG closes at the golden ratio
point. Moreover, based on effective medium theory, the general
formulations of the higher and lower band edges of the OBG
are obtained.

2. Theoretical model and numerical method

The system under consideration is composed of two layers A
and B stacked alternately along the z direction and following
the rules of the Fibonacci sequence, that is, the nth order
Fibonacci chain is obtained according to the concatenation
rule Sn = Sn−1Sn−2, with the first two chains as S0 = B
and S1 = A. In this study, layers A and B represent ENG
materials with thickness dA and MNG materials with thickness
dB, respectively. ENG and MNG materials are assumed to be
isotropic. Here, we use the Drude model to describe the SNG
materials, that is

εA = εa − ω2
ep/(ω

2 + i�ω), μA = μa (1)

in the ENG materials; and

εB = εb, μB = μb − ω2
mp/(ω

2 + i�ω) (2)

in the MNG materials. Where ωep and ωmp are the electronic
plasma frequency and the magnetic plasma frequency,
respectively; � is for the damping factors that contribute to the
absorption and losses [17, 18]. These kinds of dispersion for A
and B may be realized in special microstrips [19, 20].

The wave is incident from the vacuum to the nth order
Fibonacci multilayer with incident angle θ . For the transverse
electric (TE) wave, the electric field E is polarized along the
y direction, the dielectric layers are parallel to the x–y plane.
In general, the electric and magnetic fields at any two positions
z and z + �z in the same layer are connected via a transfer
matrix [21, 22]

M j (�z, ω) =
(

cos(k j
z �z) i 1

q j
sin(k j

z �z)

iq j sin(k j
z �z) cos(k j

z �z)

)
, (3)

where k j
z = (ω/c)

√
ε j

√
μ j

√
1 − sin2 θ/ε jμ j is the z

component of the wavevector k j in the j th layer, c is the speed

of light in a vacuum, and q j = √
ε j/

√
μ j

√
1 − (sin2 θ/ε jμ j)

is the component of the wavevector along the interface. The
transmission and reflection coefficient t (ω, θ) and r(ω, θ) can
be expressed as

t (ω, θ) = 2 cos θ

(x11 + x22) cos θ + i(x12 cos2 θ − x21)
, (4)

r(ω, θ) = (x22 − x11) cos θ + i(x12 cos2 θ + x21)

(x11 + x22) cos θ + i(x12 cos2 θ − x21)
. (5)

Here xi j(i, j = 1, 2) is the matrix element of Xn which
represents the total transfer matrix of the nth order Fibonacci
sequence. The Xn can be deduced from the following recursion
relations:

Xn = Xn−1 Xn−2 (n � 2) (6)

Figure 1. Normal incidence reflection spectra for the different order
Fibonacci structures as a function of the angular frequency with
(a) S6, (b) S7, (c) S8, and (d) S9.

with
X0 = MB(dB, ω), X1 = MA(dA, ω). (7)

The transverse magnetic (TM) wave can be treated in a
similar way. In the following calculations, we first considered
the lossless SNG materials (i.e. � = 0 in equations (1) and (2))
in the microwave frequency range; we choose εa = μb = 1,
μa = εb = 3, ωep = ωmp = 10 GHz.

3. Results and discussion

First, we choose dA = 12 mm and dB = 6 mm to study
the reflection spectra for higher order (n � 6) Fibonacci
quasicrystals. In figure 1, the reflection spectra for normal
incidence are shown in the cases of Fibonacci structures where
S6 (figure 1(a)), S7 (figure 1(b)), S8 (figure 1(c)), and S9

(figure 1(d)). It can be seen from figure 1 that, with increasing
order of Fibonacci structures, a large reflectance band centered
at the angular frequency of 5.24 GHz remains invariant and the
edges of the reflectance band become much sharper. In fact,
the reflectance band can occur in all higher-order Fibonacci
structures. For simplicity, others are not given in this paper.

Next, we analyze the formation mechanism of the
reflectance band in Fibonacci structures based on effective
medium theory. For the nth-order Fibonacci structure, the
general average ε and μ can be written as

〈ε〉n = Nn
AdAεA + Nn

BdBεB

Nn
AdA + Nn

BdB
, (8)
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Figure 2. The curves of the amplitude of average permittivity and
average permeability versus the angular frequency with dA = 6 mm
and dB = 3 mm.

〈μ〉n = Nn
AdAμA + Nn

BdBμB

Nn
AdA + Nn

BdB
, (9)

where Nn
A and Nn

B represent the number of layers of the
ENG and MNG materials in the nth-order Fibonacci structure,
respectively. According to the recursion rules of Fibonacci
structures, the number of layers in Sn is the Fibonacci number
Fn+1, where F1 = 1, F2 = 1, and Fn+1 = Fn−1 + Fn .
The number of layers of type A(B) in Sn is the Fibonacci
number Fn(Fn−1), namely, Nn

A = Fn and Nn
B = Fn−1. Then

equations (8) and (9) can be simplified as

〈ε〉n = FndAεA + Fn−1dBεB

FndA + Fn−1dB
, (10)

〈μ〉n = FndAμA + Fn−1dBμB

FndA + Fn−1dB
. (11)

A very important property of the Fibonacci numbers
involves the quotient τn = Fn/Fn−1 with lim

n→∞ τn = τ =
(1+√

5)/2 = 1.618. Equations (10) and (11) can be simplified
as

〈ε〉n = τndAεA + dBεB

τndA + dB
, (12)

〈μ〉n = τndAμA + dBμB

τndA + dB
. (13)

For infinite-order (n → ∞) Fibonacci structures, in fact,
for higher-order (n � 9) Fibonacci structures, τn ≈ τ =
(1 + √

5)/2, equations (12) and (13) can be simplified as

〈ε〉 = τdAεA + dBεB

τdA + dB
= τεA + εBdB/dA

τ + dB/dA
, (14)

〈μ〉 = τdAμA + dBμB

τdA + dB
= τμA + μBdB/dA

τ + dB/dA
. (15)

Figure 2 shows the curves of 〈ε〉 and 〈μ〉 versus the
angular frequency ω with dA = 6 mm and dB = 3 mm.
It is shown that when the angular frequency is between
ω− = 3.11 GHz (corresponding to the zero point of 〈μ〉) and

Figure 3. The photonic spectrum of Fibonacci lattices as a function
of the Fibonacci order with dA = 6 mm and dB = 3 mm.

ω+ = 7.37 GHz (corresponding to the zero point of 〈ε〉),
〈μ〉 is greater than zero and 〈ε〉 is less than zero. So the
refractive index of the effective medium is imaginary. Hence,
the effective medium does not allow the propagation of the
electromagnetic wave, and the corresponding frequency range
�ω = ω+ − ω− = 4.26 GHz should be a gap in the structure.
This gap is regarded as an SNG gap. So the higher and
lower edges of the SNG gap can be determined by 〈ε〉 = 0
and 〈μ〉 = 0. From equations (14) and (15), we can seen
that, keeping the ratio of dB/dA constant and increasing the
values of dA and dB simultaneously, equations (14) and (15)
are invariant, ω− (the root of 〈μ〉 = 0) and ω+ (the root of
〈ε〉 = 0) remain constant. So the gap width is invariant to
scaling.

For comparison, we plot the photonic spectrum of
Fibonacci lattices as a function of the Fibonacci order with
dA = 6 mm and dB = 3 mm in figure 3. We can see
from figure 3 that, when changing Fibonacci order n from 6
to 9, the higher edge of the SNG gap shifts down to lower
frequencies, while the lower edge of the SNG gap shifts up
to higher frequencies, and the frequency width becomes less.
While changing the Fibonacci order n from 9 to 22, the higher
and lower edges of the SNG gap remain constant, the frequency
region of the SNG gap runs from 3.11 to 7.37 GHz and
the frequency width is 4.26 GHz. So, numerical results are
identical to those in figure 2 based on effective medium theory
for higher-order (n � 9) Fibonacci structures.

In order to investigate the higher and lower edges of the
SNG gap in Fibonacci lattices, we plot the curves of 〈ε〉 = 0
and 〈μ〉 = 0 versus the angular frequency ω for various dB/dA

in figure 4. It is shown that the SNG gap becomes larger
as the thickness ratio of the two media moves further away
from the golden ratio (i.e. 1.618), and closes as the thickness
ratio becomes equal to the golden ratio. Both 〈ε〉 and 〈μ〉
are equal to zero at the golden ratio point, which corresponds
to the phase-match (at wave impedance matching frequency)
case, and no gap exists around the zero effective phase delay
point. While the phase of ENG and MNG materials does not
match when the dB/dA value is not equal to the golden ratio,
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Figure 4. The SNG gap profile of Fibonacci lattices as a function of
the ratio dB/dA.

Figure 5. The photonic spectrum of Fibonacci lattices S13 as a
function of the ratio dB/dA.

mismatch will cause a gap in Fibonacci lattices, and the further
away from the golden ratio the dB/dA value is, the larger the
mismatch of the phase and the larger the SNG gap. Moreover,
the lower and upper edges of the SNG gap are affected by the
thickness ratio, i.e. the lower edge of the SNG gap shifts to
lower frequencies, while the upper edge of the SNG gap shifts
to higher frequencies when the thickness ratio of the two media
is far away from the golden ratio.

For comparison, we plot the photonic spectrum of
Fibonacci lattices as a function of the ratio dB/dA in figure 5.
It is shown that, when changing dB/dA from 0.25 to the
golden ratio (i.e. 1.618), the SNG gap becomes larger, while
changing dB/dA from 1.618 to 3.25, the SNG gap becomes
less. Namely, the SNG gap becomes larger when the thickness
ratio of the two media is far away from the golden ratio.
When dB/dA is equal to the golden ratio, Fibonacci structures
become transparent around the frequency point. These results
are identical to those in figure 4.

Figure 6. Frequency bandgaps of Fibonacci lattices S13 with
dA = 6 mm and dB = 3 mm for different incident angles and
polarizations: (a) TE and (b) TM polarization.

Next, we discuss the band structure of Fibonacci lattices
for different incident angle and polarization of light. We take
S13 as an example and investigate the wide angle reflectance
behavior of the system. In figure 6, we show transmittance
spectra for both TE (figure 6(a)) and TM (figure 6(b))
polarizations versus angular frequency for different incident
angles. When the incident angle increases from 0◦ to 90◦,
the higher and lower edges of the SNG gap of Fibonacci
lattices remain invariant for both polarizations. It can be seen
that the band edges of the SNG gap of the Fibonacci lattices
are insensitive to the incident angle and the polarization of
light, such an SNG gap is omnidirectional. So the frequency
range of the OBG for both polarizations is between 3.11
and 7.37 GHZ and the frequency width is 4.26 GHz. This
property is different from the zero-n̄ gap mechanisms in
Fibonacci structures containing left-handed materials [16], in
which the lower or upper frequency edges of the zero-n̄ gap
are sensitive to incident angle for different polarizations, and
are different fundamentally from those of OBGs in Fibonacci
dielectric superlattices [23], in which OBGs depend only
on TM polarization. The main reason for the different
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results is because their mechanisms of band formation are
different. The band formation comes from light scattering of
propagating modes in Fibonacci dielectric superlattices; while
for Fibonacci structures with SNG materials, it originates from
light tunneling of evanescent modes.

It should be pointed out that the loss of SNG materials
cannot be neglected, though the imaginary part of the
permittivity or permeability at some frequencies is very low.
The main properties of the OBG in Fibonacci photonic crystals,
however, are not affected because the band edges of the OBG
determined by equations (14) and (15) do not present any rapid
change when a very small loss is added to the SNG materials.
The losses only decrease the transmission intensity.

4. Conclusions

In summary, the band structure and bandgaps of one-
dimensional quasicrystals composed of ENG materials A and
MNG materials B, arranged according to a recursion rule of the
Fibonacci type, have been studied. We have proven that certain
combinations of both components can lead to the formation
of an OBG, which is insensitive to the incident angle and the
polarization of light. In fact this OBG ceases to change with
increasing Fibonacci order and it only varies with the thickness
ratio of both components. The OBG closes when the thickness
ratio is equal to the golden ratio. Moreover, based on effective
medium theory, the higher and lower edges of the OBG can be
determined by 〈ε〉 = 0 and 〈μ〉 = 0. These results could lead
to further applications of the Fibonacci structures.
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